

Xbase++ PDF Class

User guide
2020

Created by Softsupply Informatica

Rua Alagoas, 48
01242-000

São Paulo, SP
Brazil

Tel (5511) 3159-1997
Email : softsupply@terra.com.br

Contact : Edgar Borger

mailto:softsupply@terra.com.br

2

Table of Contents
Overview ..5

Installing ...6
Changes ...7
Acknowledgements ..12
Demo ..13
GraDemo ..15
Charts ...18
Notes ..19

Class Methods ...20
PDF Creation ...21

Document ...22
New ..23
Create ..24
NewPage ..25
Size ..28
EndDoc ..29
Outline ..30
PageMode ..31
Password ...32
Encryption ..33
Permission ...34
NumPages ...35
GoToPage ..36
ClonePage ...37
Merge ...38
SetPDFAMode ...39
EmbedFile ..40
EmbedRelatedFile ..41
EmbedRelatedString ..42
EmbeddedFileCount ..43
EmbeddedFileStrProperty ..44
GetEmbeddedFileContent ..45
Compress ...46

Text and Fonts ...47
Font ..48
FontDef ..50
Text ...51
mText ..52
rText ...54
TextArc ...55
TextColor ..57
ChineseFonts ...58
TextWidth ...59
GetTextFrom ..60

3

Form Fields ..61
FormAdd ..62
FormGet ...63
FormValue ..64
FormFlatt ..65

Drawing ..66
Line ..67
Box ...68
Shape ...69
Image ...70
LineColor ..72
LineType ...73
BoxColor ..74
LineWidth ...75

Charts ...76
BarChart ...77
LineChart ..79
PieChart ...81

Xbase Graxx Methods ...83
GraSetAttrArea ...84
GraSetAttrLine ...85
GraSetAttrMarker ...86
GraSetAttrString ...87
GraSetColor ...88
GraSetFont ...89
GraStringAt ..90
GraPos ...91
GraQueryTextBox ...92
GraArc ..93
GraBox ...95
GraLine ..97
GraMarker ..98
GraPathBegin ...99
GraPathEnd ...100
GraPathOutline ..101
GraPathFill ...102
TextBox ..103
PageBox ...104
XppPDF.ch ...105

PDF Creation Class Variables ...107
View & Print ...109

Intro ..110
VipInit ...111
VipOpen ...112
View ..113

4

Print ..115
PrintA ...116
PrintO ...117
RenderToPS ...118
RenderToBMP ..119
View & Print Class Variables ...120

5

Overview

This class was created to fill the need of Xbase++ users around the world, as noted by the many threads existing
in the Xbase News Group about creating PDF output from Xbase++ applications. Several solutions have been
presented, but none was a complete one, that could be deployed to customer installations without further steps,
like PDF printer drivers, and so on.

 This is a very simple class with very little effort in terms of programming, of course implementing it will require
code changes, but the benefits are worth it.
 An example of a simple program would be :

 PROCEDURE MAIN

pdf := xbpPdf():New()

// Creates the PDF object

pdf:Create(“Hello.Pdf”)

// Tell the class the file name

pdf:NewPage()

// Page size (Clipper style)

pdf:Font('10.Courier New')

// Choose font

pdf:Text(1, 1, "Hello World !")

// write text

pdf:EndDoc() // Close file and write to disk
 return

 As seen here, I use lines and columns in the old Clipper style, also known as TopDown witch should make things
easier to users of TD or Express libraries.

6

Installing

To install Xbase PDF Class, unzip and copy the DLL files to your working path, select the DLLs from subfolder
180, 182, 190, 190Sl1 or 200 for the correct Xbase version, and xpppdf62.dll and ot4xb.dll from the main zip
directory.

Also copy xppdf61.lib from the subfolder 180, 182, 190, 190Sl1 or 200 to the source directory.

All together you will need 3 DLL, XppPdf61, XppPdf62 and Ot4Xb available at run time, for the class to work
properly.

To use the new Rendering options, you will also need XppPDF63.DLL and/or XppPDF64.DLL in the path or
application folder.
See the NEW() method for more details

This file will print a pink "DEMO" diagonal line on every page, this will not show when you get the registered
key number.

7

Changes

Changes for Version 6.0

• New Rendering options, see the NEW() method.

• New SetPDFAMode, to create PDF/A type files

• New EmbedFile and EmbedRelationFile to embed files into the PDF, accept XML files according to the German
ZUGFeRD specification

• New Encoding support for UNICODE characters, text can now be in ANSI, OEM or UNICODE (UTF-16LE).

• New Compress method, to compress PDF files, reducing the size of the created or an existing PDF file.

• Font now accepts non whole numbers (ex. oPdf:Font('8.5 Verdana'))

• Two new printing methods PrintA and PrintO, with different rendering options, fell free to try and compare the
results a choose whichever gives you a better result.

• Several minor fixes to the library

Changes for Version 5.2

• New method GetTextFrom, to extract text from existing PDF files.

• Several minor fixes to the library

Changes for Version 5.1

• New Methods to create and/or process existing form fields in PDF files.

• EndDoc method now accepts a FileName parameter to save the new/changed PDF file.

8

• Several minor fixes to the library

Changes for Version 5.0

• Support for Xbase++ V2.0

• New Renderer engine with improved view and print quality

• Faster processing

• Fixed several minor issues

• New Method TextArc

Changes for Version 4.1

• New management of fonts, the FontDef call is no longer needed, it is still available for backward compatibility
reasons.

• Enhanced printing speed and file size.

• Smaller distribution footprint, the XppPDF2.dll is no longer needed, only XppPDF1 and XppPDF3 are now
required.

• Fixed problem with margins, top margins are ignored if you use bottom/up coordinates, and are now correctly
processed for top/down coordinates systems.

• Fixed problem for password protected files, could not be opened for viewing and/or printing

• New ANSI/DOS translation table for Scandinavian characters

• New Page Scaling option in the Print Method, options are :
0 = None
1 = Fit to paper
2 = Shrink large pages

9

Changes for Version 4.0

• New methods to emulate Xbase++ Gra.. functions. See Xbase Graxx Methods.

• New methods now enable Viewing and Printing PDF files, without the use of any external resources.

• New Rendering methods, will render a PDF page to any Xbase++ presentation space or bitmap object.

• Ability to integrate with TD library by Clayton Jones, for version 7 and above, a new button will be available
in the printer class, allowing the generated report to be saved as a PDF file with options for Image based copy or
elements based copy.

• New XPPPDF.CH preprocessor file, that will automatically translate all Xbase++ Graxx calls to the equivalent
XbpPDF methods. See GraDemo.

Changes for Version 3.3
• Improved image handling, including the option to draw a XbpBitmap object.

• Ability to integrate with Top-Down library by Clayton Jones for version 7.0 and above. An optional PDF
button will be available in the Print Preview window, allowing the generated report to be saved as a PDF file.
PDFs can also be created programmatically without using the Preview window.

• New Coordinate system 100 = Clipper style (lines,columns) Bottom Up

• New option for Shape() Method, with the possibility to fill a shape with a specific color instead of Gray.

Changes for Version 3.2

• Translation routines for DOS/Windows characters conversion in German and Central Europe languages.

Changes for Version 3.1
• New method PageMode for viewing the created document, using your registered PDF reader.

• Translation routines for DOS/Windows characters conversion in Polish and Portuguese languages.

10

• Encoding options now stays permanent until changed explicitly by Font call

• Better support for embedded fonts, using AFM and PFB files in the FontDef call.

• Minor corrections for box, line and text colors.

• Improved error handling routine

Changes for Version 3

• Underscore is now supported for any font, allowing the underlining of text.

• Enhanced Font support, with the new method FontDef that allows to include any existing True Type font in your
document.

• Better justification control with the use of the width parameter in the mText method

• Smaller DLLs, with the enhanced font support, the need of Xpppdf3.DLL and Xpppdf4.DLL are no longer needed,
so only Xpppdf1 and Xpppdf2 are now present, using less disk space, and easier implementation.

• Faster execution, the process of creating the PDF has been optimized, consuming less time.

• PDF Compression, the use of compression permits the creation a smaller pdf's.

• TWIPS and MILLIMETERS as well as Top/Down variations are now supported as a coordinate system.

0 = CLIPPER Line, Column, Top Down (Clipper
style)

1 = GRA_PU_PIXEL Pixels, Bottom Up

2 = GRA_PU_LOMETRIC 0.1 Millimeters, Bottom Up

3 = GRA_PU_HIMETRIC 0.01 Millimeters, Bottom Up

4 = GRA_PU_LOENGLISH 0.01 Inches, Bottom Up

5 = GRA_PU_HIENGLISH 0.001 Inches, Bottom Up

6 = GRA_PU_TWIPS 1/1440 Inches, Bottom Up

7 = MILLIMETERS 1 Millimeters, Bottom Up

101 = PIXEL TOP/DOWN Pixels, Top Down

102 = LOMETRIC TOP/
DOWN

0.1 Millimeters, Top Down

11

103 = HIMETRIC TOP/
DOWN

0.01 Millimeters, Top Down

104 = LOENGLISH TOP/
DOWN

0.1 Inches, Top Down

105 = HIENGLISH TOP/
DOWN

0.01 Inches, Top Down

106 = TWIPS TOP/DOWN 1/1440 Inches, Top Down

107 = MILLIMETERS TOP/
DOWN

1 Millimeters, Top Down

• Outline now permits the creation of markers in your document, creating a document outline, that will assist the
user of the final document with a better navigation within large (several pages) documents.

• Enhanced documentation with better explanation of methods parameters, as well as more examples on each method.

• Enhanced error routine, that will provide better debugging information in case of error during execution.

12

Acknowledgements

Many thanks to (in alphabetical order) :

Adolf Hebelka

Clayton Jones

Guenter Beyes

Miro Martinidis

Pablo Botella

Randy Howe

Takeshi Kanno

Who helped to develop and test several routines from our class.

The distribution file also uses Ot4Xb.dll library, developed by Pablo Botella, that can be found at http://
www.xbwin.com where you have the complete library and docs.

Special thanks to Pablo, and Clayton for the contribution in the development of the class, without your help this
would not be possible.

http://www.xbwin.com/
http://www.xbwin.com/

13

Demo

This is a sample program that creates the “Demo.PDF” that is included in this package, by analyzing it, you
will be able to see how simple its is, and at the same time how powerful this new class is.

 #include "dll.ch"
 #include "gra.ch"
 #include "xbp.ch"
 #include "common.ch"
 #include "xbpdev.ch"
 #pragma library("XppPDF61.lib")

 PROCEDURE MAIN

 fl := 'Demo.Pdf'
 use parts

 pdf := xbppdf():New()
 dc := pdf:Create(fl)
 pg := pdf:newpage(XBPPRN_FORM_LETTER)

 pdf:Box(1, 1, 60, 78)
 pdf:Image(2, 2, 5, 77, "Logo.JPG")
 pdf:LineWidth(2)
 pdf:Box(6, 2, 10, 77, 10)
 pdf:TextColor(GRA_CLR_BLUE)
 pdf:font('14.Courier New Bold')
 pdf:Text(7, 10, "Parts Price List")
 pdf:Text(7, 60, dtoc(date()))

 pdf:LineWidth(1)
 pdf:Box(12, 2, 50, 77)
 pdf:Line(12, 13, 50, 13)
 pdf:Line(12, 54, 50, 54)
 pdf:Line(12, 65, 50, 65)
 pdf:TextColor(GRA_CLR_BLACK)
 pdf:font('10.Courier New')
 pdf:text(12.4, 3, "Prt Nmbr")
 pdf:text(12.4, 14, "Description")
 pdf:text(12.4, 55, " Available")
 pdf:text(12.4, 66, " Price")
 pdf:Line(14, 2, 14, 77)

 go top

14

 line := 14
 do while .not. eof()
 pdf:Text(line, 3, number)
 pdf:Text(line, 14, descrip)
 pdf:Text(line, 57, transform(qt, '###,###'))
 pdf:Text(line, 66, transform(price, '###,###.##'))
 line = line + 1
 skip
 enddo

 pdf:BoxColor(GRA_CLR_RED)
 pdf:Box(52, 6, 57, 73, 25)
 pdf:TextColor(GRA_CLR_DARKBLUE)
 pdf:font('20.Courier New')
 pdf:Text(52.5, 9, 'Demo Created by Softsupply Informatica')
 pdf:TextColor(GRA_CLR_BLACK)
 pdf:font('8.Courier New Italic')
 pdf:Text(54, 9, 'Contact :')
 pdf:Text(54, 44, 'eMail :')
 pdf:Text(55, 9, 'Phone :')
 pdf:Text(55, 44, 'Fax :')
 pdf:font('12.Courier New')
 pdf:Text(54, 15, 'Edgar Borger')
 pdf:Text(55, 15, '(5511) 3159-1997')
 pdf:Text(55, 49, '(5511) 3255-5224')
 pdf:TextColor(GRA_CLR_BLUE)
 pdf:Text(54, 49, 'eborger@terra.com.br')

 pdf:enddoc(.t.)
 close data
 RETURN

15

GraDemo

This sample program GraDemo.PRG, illustrates the use of the XPPPDF.CH preprocessor file to assist in the
conversion of existing reports to use the XbpPDF class and create PDF files.

#include "xbp.ch"
#include "gra.ch"
#include "common.ch"
#include "xbpdev.ch"
#include "appevent.ch"
#include "xpppdf.ch"
#pragma library("XppPDF61.lib")

PROCEDURE MAIN

aSize := { 590, 780 }
aPos := { 0, 50 }
oDlg := xbpDialog():New(AppDesktop(), , aPos, {612, 822})
oDlg:Create()

oPs := oDlg:DrawingArea:LockPS()
oFont := xbpFont():New(oPs)
oFont:Create('24.Times New Roman')

oPdf := xbppdf():New()
oPdf:Create("gra.pdf")
oPdf:NewPage(, , , , ,1)

Report(oPdf)
oPdf:EndDoc(.t.)

Report(oPs)

nEvent := 0
do while nEvent <> xbeP_Close
 nEvent := AppEvent(@mp1, @mp2, @obr)
 obr:handleEvent(nEvent, mp1, mp2)
Enddo

Return

Function Report(oPs)

16

LOCAL aAttra

 aAttra := array(GRA_AA_COUNT)

 aAttra[GRA_AA_COLOR] := GRA_CLR_WHITE
 GraSetAttrArea(oPs, aAttra)
 GraBox(oPs, {10,10}, aSize, GRA_OUTLINEFILL)

 aAttra[GRA_AA_COLOR] := GRA_CLR_YELLOW
 GraSetAttrArea(oPs, aAttra)
 GraBox(oPs, {100, 100}, {512, 692}, GRA_OUTLINEFILL)

 GraSetFont(oPs, oFont)
 GraSetColor(oPs, GRA_CLR_BLUE)
 GraStringAt(oPs, {230, 400}, "Hello world!")

RETURN(.t.)

// This function ReportPDF bellow, is equivalent to function Report above with a PDF object as a parameter,
XbpPDF class will analyze the object
// parameter, and if it is a XbpPDF object will call the appropriate class methods instead of normal Xbase++
functions.
//
// Note that if you call the method directly, you should not pass the PDF object as a parameter.

Function ReportPDF()
LOCAL aAttra

 aAttra := array(GRA_AA_COUNT)

 aAttra[GRA_AA_COLOR] := GRA_CLR_WHITE
 oPdf:GraSetAttrArea(aAttra)
 oPdf:GraBox({10,10}, aSize, GRA_OUTLINEFILL)

 aAttra[GRA_AA_COLOR] := GRA_CLR_YELLOW
 oPdf:GraSetAttrArea(aAttra)
 oPdf:GraBox({100, 100}, {512, 692}, GRA_OUTLINEFILL)

 oPdf:GraSetFont(oFont)
 oPdf:GraSetColor(GRA_CLR_BLUE)
 oPdf:GraStringAt({230, 400}, "Hello world!")

RETURN(.t.)

17

18

Charts

This is a sample program that creates the “Charts.PDF” that is included in this package, by analyzing it, you will
be able to see how simple its is, and at the same time how powerful this new class is.

 PROCEDURE MAIN

fl := 'Charts.Pdf
pdf := xbppdf():New()
dc := pdf:Create(fl)
pg := pdf:newpage(XBPPRN_FORM_LETTER)

pdf:Font('12.Courier New Bold')
pdf:Text(0.5,2,"Pie Chart Sample")
data := {5,6,1,3,8,9,4,6,1,7}
titu := {'1','22','333','4444','55555','666666','7777777','8888888','99999','000'}
pdf:PieChart(15,30,5,data,titu,"Pie Chart Sample")

pdf:Font('12.Courier New Bold')
pdf:Text(24.5,2,"Line Chart Sample")
data := { {5,6,1,3,8,9,4,6,1,7}, {8,3,7,10,6,8,2,1,3,4} }
titu := {'A','B','C','D','E','F','G','H','I','J'}
pdf:LineChart(44,10,14,50,data,titu,"Line Chart Sample", {GRA_CLR_BLUE, GRA_CLR_RED})

pdf:Font('12.Courier New Bold')
pdf:Text(45.5,2,"Bar Chart Sample")
data := {5,6,0,3,8,9,4,6,1,7}
titu := {'A','B','C','D','E','F','G','H','I','J'}
pdf:BarChart(65,10,14,55,data,titu,"Bar Chart Sample", GRA_CLR_BLUE, GRA_CLR_RED)

pdf:enddoc(.t.)

 RETURN

19

Notes

1. All color references are in the GraSetColor format and can be used from GRA.CH, additional colors can be
created and used with GraMakeRGBColor() function.

2. Page Size and orientation can be used from XBPDEV.CH

3. Lines and Columns for all functions are according to the chosen coordinate system, in the Clipper/Text style
(Coordinate System 0), the 0,0 point is top leftmost position, all others are Xbase style, meaning that the 0,0
point is at the bottom leftmost position of the page.

20

Class Methods

Available class methods.

21

PDF Creation

Class Methods to create PDF files.

22

Document

Those are the document handling methods.

23

New

• New(cKey, nRenderer) => Creates the pdf object. The parameter is needed to remove the DEMO restrictions.

cKey : is the numeric key as a string, to remove the "DEMO" restriction

nRenderer : 1 = GDI+
 3 = DPLR (AGG) - Needs XppPDF63.DLL in the path or application folder
 4 = PDFium - Needs XppPDF64.DLL in the path or application folder

Select the renderer to use during rendering. By default the GDI+ rendering engine is used.
All rendering functions support the DPLR (AGG) rendering engine.

Return values

0 The specified renderer could not be selected
1 The GDI+ renderer was selected
3 The DPLR (AGG) renderer was selected
4 The PDFium renderer was selected

24

Create

• Create(filename, oPrt) => Declares the name of the output file, if a file with that name already exists on your
disk, it will be overwritten by the new one. This method is mandatory.

Filename (character) : is the full file name to be created.

oPrt (object) : is an optional Xbase printer object (XbpPrinter) to be used with the :Print() method, if none
is given, then a printer dialog will be presented during the printing of the PDF file.

Example : oPdf:Create(“Sample.PDF”)

25

NewPage

• NewPage([page size], [orientation], [lines], [columns], [user size], [Coord System], [left margin], [top
margin]) => starts a new page, specifying the page size, orientation and the coordinates system used.

Page size (numeric) : is a page format reference as in XBPDEV.CH. The page size defaults to
XBPPRN_FORMAT_LETTER, valid page sizes are :
Letter 230 x 275 8 1/2 x 11

LetterSmall 230 x 279 8 1/2 x 11

Tabloid 279 x 432 11 x 17

Ledger 432 x 279 17 x 11

Legal 203 x 356 8 1/2 x 14

Statement 127 x 203 5 1/2 x 8 1/2

Executive 184 x 254 7 1/4 x 10 1/2

A3 297 x 420

A4 210 x 297

A4 Small 210 x 297

A5 148 x 210

B4 250 x 354

B5 182 x 257

Folio 203 x 330 8 1/2 x 13

Quarto 215 x 275

10 x 14 in 254 x 356 10 x 14

11 x 17 in 279 x 432 11 x 17

Note 203 x 279 8 1/2 x 11

Envelope #9 98 x 225 3 7/8 x 8 7/8

Envelope #10 105 x 229 4 1/8 x 9 1/2

Envelope #11 102 x 264 4 1/2 x 10 3/8

Envelope #12 102 x 179 4 3/4 x 11

Envelope #14 127 x 279 5 x 11 1/2

C size sheet 432 x 558 17 x 22

D size sheet 558 x 864 22 x 34

E size sheet 864 x 1118 34 x 44

DL 110 x 220

C5 162 x 229

C3 324 x 458

26

C4 229 x 324

C6 114 x 162

C65 114 x 229

B4 250 x 353

B5 176 x 250

B6 176 x 125

Envelope Italy 110 x 230

Monarch 98 x 191 3 7/8 x 7 1/2

Envelope Personal 92 x 165 3 5/8 x 6 1/2

US Standard Fanfold 378 x 279 14 7/8 x 11

German Standard Fanfold 216 x 305 8 1/2 x 12

German Legal Fanfold 216 x 330 8 1/2 x 13

Orientation (numeric) : is the page orientation, portrait or landscape, and defaults to
XBPPRN_ORIENT_PORTRAIT.

Lines (numeric) : is the number of lines in the page, this number is related to the chosen coordinate system
(see bellow). Default is 66 lines per page.

Columns (numeric) : the number of character columns in each line, this number is also related to the
coordinate system. Default is 80 characters per line.

User size (array) : is a two element array that specifies page dimensions, first element is horizontal size,
and second element is vertical size. This parameter is only used for page size XBPPRN_FORMAT_USER,
and the measures should be in 1/72 inches. A page with 3 x 5 inches should be informed as { 216, 360 }.

Coordinate system (numeric): the coordinates system specifies the type of coordinates (line, column) passed
to the class, they can be :
0 = CLIPPER Line, Column, Top Down (Clipper style)

1 = GRA_PU_PIXEL Pixels, Bottom Up

2 = GRA_PU_LOMETRIC 0.1 Millimeters, Bottom Up

3 = GRA_PU_HIMETRIC 0.01 Millimeters, Bottom Up

4 = GRA_PU_LOENGLISH 0.01 Inches, Bottom Up

5 = GRA_PU_HIENGLISH 0.001 Inches, Bottom Up

6 = GRA_PU_TWIPS 1/1440 Inches, Bottom Up

7 = MILLIMETERS 1 Millimeters, Bottom Up

101 = PIXEL TOP/DOWN Pixels, Top Down

102 = LOMETRIC TOP/DOWN 0.1 Millimeters, Top Down

103 = HIMETRIC TOP/DOWN 0.01 Millimeters, Top Down

104 = LOENGLISH TOP/DOWN 0.1 Inches, Top Down

27

105 = HIENGLISH TOP/DOWN 0.01 Inches, Top Down

106 = TWIPS TOP/DOWN 1/1440 Inches, Top Down

107 = MILLIMETERS TOP/DOWN 1 Millimeters, Top Down

left margin (numeric) : left margin for the document, default is two characters.

top margin (numeric) : top margin for the document, default is two lines.

Examples : oPdf:NewPage(XBPPRN_FORMAT_A4) will create a page in the A4 format, oriented
portrait, with 66 lines and 80 columns, using line/column coordinate system.

oPdf:NewPage(XBPPRN_FORMAT_LETTER, , 660, 800) will create portrait oriented
page, letter size, with standard line/column coordinate system, but with 660 lines per page
and 800 characters per line, creating a smaller line/character feed, that could provide better
precision in positioning elements on the page.

oPdf:NewPage(XBPPRN_FORMAT_LETTER, , , , 3) this page will have letter size, but
will be using HIMETRIC coordinate system.

oPdf:NewPage(XBPPRN_FORMAT_USER, , 30, 70, { 504, 360 }) this page will be sized
at 5 x 7 inches providing 30 lines with 70 characters in each line, notice that the horizontal
dimension (504) is larger that the vertical (360), indicating that the paper will be at a landscape
position.

28

Size

• Size([lines], [columns], [nCScale], [nScale]) => Changes the lines and/or columns measures specified in the
NewPage().

Lines (numeric) : is the number of lines in the page, this number is related to the chosen coordinate system
(see bellow). Default is 66 lines per page. Changing this number will alter the distance between lines, fitting
more or less lines in a page.

Columns (numeric) : the number of character columns in each line, this number is also related to the
coordinate system. Default is 80 characters per line. Changing this number will alter the distance between
characters, fitting more or less characters in a line. The character size will not change, if you want to change
the character size you must use the Font() method, changing the font size and/or the scale of the font.

nCScale (numeric) : Scales the number of columns in each line, default is 100% (no scaling). Changing this
number will alter the distance between characters, fitting more or less characters in a line. The character
size will not change, if you want to change the character size you must use the nScale parameter (4th) of
this call, or the Font() method, changing the font size and/or the scale of the font. This will also affect the
Lines(), Boxes() and all other methods that use coordinates to draw on the page.

nScale (numeric) : Scales the text, default is 100% (no scaling). Changing this number will alter the size
of the characters, fitting more or less characters in a line.

Examples : oPdf:Size(66, 120) will change the measurements to 66 lines per page and 120 columns,
using line/column coordinate system.
oPdf:Size(66, 80, 75) will change the coordinates system, resulting in an image 75% of the original width.

29

EndDoc

• EndDoc(lView [, cFileName]) => finish all processing, and saves the file to disk.

 lView (logical) : View is a logical parameter (.t. or .f.) to view the created PDF (using registered PDF reader)

 cFileName (character) : File name of the saved PDF file, if none is given it will use the file name assigned
by the Create() method.

Instead of using the registered PDF reader, you can use the :View() method to display the created PDF file,
leave this parameter as False (default) and use the :View() method just after the :EndDoc() call, or change the
content of :lView to True (oPdf:lView := .t.) before to call to :EndDoc()

30

Outline

• Outline(line, parent, title) => will create an outline (markers) of the document giving a title for each page at
the outline.

Line (numeric) : is the vertical position within the page.

Parent (numeric) : is the parent for this title in the outline tree. The first time used will create a root parent,
any outline linked to the root should be specified as NIL

Title(character) : is the title that will show at the outline.

Returns : This method will return the created outline, that can be used as future parent for other
outline titles.

Example : pg1 := oPdf:Outline(1, NIL, “Page 1”)
 Ou1 := oPdf:Outline(5, pg1, "Outline 1")

31

PageMode

• PageMode(mode) => defines page viewing mode for PDF Reader.

 Mode (numerical) : viewing mode (using registered PDF reader) can be as follows :

0 (none) Use default PDF reader mode
1 (outline) Show document Outline page
2 (Thumbnail) Show pages thumbnails
3 (Full Screen) Show document in Full Screen mode

this method can be called anywhere between Create() and EndDoc() calls.

32

Password

• Password(ownerpass, userpass) => defines passwords for PDF Reader.

Ownerpass (character) : defines a owner password for the PDF file. The owner password can not be null.

Userpass (character) : defines a user password for the PDF file. The user password can be any length, including
null, but if present, must be different from the owner password.

If passwords are defined for the file, the PDF will be encrypted.
This method can be called anywhere between Create() and EndDoc() calls.
Before this method is used, you MUST set Encryption mode and Permission levels.

Ex: oPdf:Encryption(2, 5)

 oPdf:Permissions(16 + 32)
 oPdf:Password("owner", "user")

33

Encryption

• Encryption(mode, keylen) => defines encryption mode for PDF Reader.

Mode (numeric) : defines encryption mode, valid parameters are 2 for 40 bit encryption, and 3 for 128 bit
encryption.

Keylen (numeric) : defines key length for encryption, if mode is 2 (40 bit) key length must be 5, using mode
3 (128 bit) key length can be 5 for 40 bit encryption, or 16 for 128 bit encryption.

This method can be called anywhere between Create() and EndDoc() calls, but it MUST be called before
calling the Password method.

34

Permission

• Permission(level) => defines permission levels for PDF Reader.

Level (numeric) : defines the level of permissions for the user, valid values are :

value description
 0 ENABLE READ user can read the document.
 4 ENABLE PRINT user can print the document.
 8 ENABLE EDIT_ALL user can edit the contents of the document other than annotations, form fields.
 16 ENABLE COPY user can copy the text and the graphics of the document.
 32 ENABLE EDIT user can add or modify the annotations and form fields of the document.

Different values can be combined by adding values, oPdf:Permission(4+8+16+32) will give full permission
to the user, and is the default.

This method can be called anywhere between Create() and EndDoc() calls, but it MUST be called before
calling the Password method.

35

NumPages

• NumPages() => returns the number of pages in the document.

This method can be called anywhere between Create() and EndDoc() calls.

36

GoToPage

• GoToPage(n) => jumps to page n

jumps to page n, whre n is any number between 1 and the total number of pages in the document, to get
the number of pages see the NumPages() method.

This method can be called anywhere between Create() and EndDoc() calls.

37

ClonePage

• ClonePage(cTemplate, nPag, nQpag) => will merge into the current PDF some pages from another document
cTemplate.

nPag : the initial page number to be extracted from the other file into the main file.

nQpag : the number of pages to be extracted from the other file into the main file.

This can be used to help create multiple pages in a document, with similar features, like a logo, heading and
footing, forms, or any other data. First create a document that will serve as the template, save it, and then you
can use it over and over again to add similar pages to any other document.

38

Merge

• Merge(cTemplate) => will merge into the current PDF all pages from another document cTemplate.

This method allows merging of multiple PDF files into one.

39

SetPDFAMode

• SetPDFAMode(nMode) => Sets the PDF to a PDF/A mode

nMode can be:
2 = PDF/A-1b
201 = PDF/A-2b
202 = PDF/A-2u
301 = Set PDF/A-3b mode for a new document
302 = Force PDF/A-3b mode for a loaded document
303 = PDF/A-3u

Return values

false (.f.) Invalid NewMode parameter
true (.t.) The compliance mode was set successfully

40

EmbedFile

• EmbedFile(cTitle, cFileName, cMIMEType) => Embeds (attach) a file to the PDF.

cTitle : A unique title for this file. No two files can have the same title. If a file with this title already exists
in the document the new file will not be embedded.

cFileName : The full path and name of the file to embed.

cMIMEType : The optional MIME type of the file, for example "image/jpg" for a JPEG image. See http://
www.iana.org/assignments/media-types/ for a full list of MIME types. If the MIME type is not known it
can be set to an empty string.

Return values
false (.f.) Invalid NewMode parameter
true (.t.) The compliance mode was set successfully

41

EmbedRelatedFile

• EmbedRelatedFile(cTitle, cFileName, cMIMEType, AFRelationship, nOptions) => Embeds (attach) a file to
the PDF.

cTitle : A unique title for this file. No two files can have the same title. If a file with this title already exists
in the document the new file will not be embedded.

cFileName : The full path and name of the file to embed.

cMIMEType : The optional MIME type of the file, for example "text/xml" for an XML file. See http://
www.iana.org/assignments/media-types/ for a full list of MIME types. If the MIME type is not known it
can be set to an empty string.

AFRelationship : The relationship between the embedded file and the document. Can be one of "Data",
"Source", "Alternative", "Supplement" or "Unspecified".

nOptions : 0 = Regular embedding

 1 = ZUGFeRD mode

Return values
false (.f.) - The file could not be embedded
true (.t.) - The file was embedded successfully

42

EmbedRelatedString

• EmbedRelatedString(cTitle, cString, cMIMEType, AFRelationship, nOptions) => Embeds (attach) a file to
the PDF.

cTitle : A unique title for this file. No two files can have the same title. If a file with this title already exists
in the document the new file will not be embedded.

cString : a character string with the contents to be Embedded.

cMIMEType : The optional MIME type of the file, for example "text/xml" for an XML file. See http://
www.iana.org/assignments/media-types/ for a full list of MIME types. If the MIME type is not known it
can be set to an empty string.

AFRelationship : The relationship between the embedded file and the document. Can be one of "Data",
"Source", "Alternative", "Supplement" or "Unspecified".

nOptions : 0 = Regular embedding

 1 = ZUGFeRD mode

Return values
false (.f.) - The string could not be embedded
true (.t.) - The string was embedded successfully

43

EmbeddedFileCount

• EmbeddedFileCount() => Returns the number of files embedded in the PDF.

Return values
the quantity of embedded files.

44

EmbeddedFileStrProperty

• EmbeddedFileStrProperty(nInd, nOpt) => Returns properties of the embedded files in the PDF.

nInd : The index number of the embedded file.

nOpt : Option indicating which property you want to retrieve, valid options are:

1 => File Name
2 => MIME type
3 => Creations Date
4 => Modification Date
5 => Title
7 => Description

Return values

the chosen property of the embedded file.

45

GetEmbeddedFileContent

• GetEmbeddedFileContent(nIndex, cFileName) => Extracts an embedded (attached) a file from the PDF
and save it as a disk file.

cIndex : The index of the embedded file. Must be a value between 1 and the value returned by
EmbeddedFileCount.

cFileName : The path and file name of the file to write the contents to.

Return values

false (.f.) Could not write to the specified file or Index parameter was invalid.
true (.t.) Embedded file contents written to the specified file successfully.

46

Compress

• Compress(cFileIn, cFileOut, nPct) => Compress a PDF file. The files must be a disk file, if you wish to
compress the current file in memory, you should save it first with EndDoc() and then compress it.

cFileIn : The input PDF file name to be compressed,

cFileName : The path and file name of the output (compressed) PDF file.

nPct : a number ranging from 0 to 100, the larger the number, more quality and less compression will be
done, the lower the number, more compression of the file, but having a lesser quality.

47

Text and Fonts

Those are text methods, with them you can load any kind of text into your document.

48

Font

• Font([compound fontname], [Encoding], [Embed], [translate], [lfixed], [nScale]) => specify the wanted font
according to Xbase syntax, nominal point size followed by dot followed by font name. If none provided defaults to
“10.Courier New”, with WinAnsiEncoding. Basic fonts are included in the Xbase PDF Class, but with version 3,
any True Type font can be used to create your document, (see FontDef bellow), also any size can be used, there is
no limitation to maximum size or the number of fonts used in one document. The existing fonts can be combined
with Bold and or Italic, and “Underscore” can be added to any combination, providing underlining of text.

Compound fontname (character) : is the font compound name, point size, followed by font family name.
Point size can be any number, including non integer number. Valid fonts are any true type font instaled in
your system, combined to Bold, Italic or Bold Italic. Underscore can be added to any of the available fonts,
like Font(“8.5.Arial Underscore”) or Font(“12.Helvetica Bold Underscore”). Other fonts might be used
using the FontDef method.

Encoding (character) : This parameter can be used to specify different encoding for the chosen font, one
of the following values should be used :

Encoding Comments

WinAnsiEncoding Normal Windows encoding

CP1250 Central Europe

CP1251 Cyrillic

CP1253 Greek

CP1254 Turkish

CP1255 Hebrew

CP1256 Arabic

CP1257 Baltic

CP1258 Vietnam

Embed (logical) : specify if the font file is to be embedded in the document, or not. Embedding the font
makes the document larger in size, but assures that the font will be respected, if not embedded, the reader
may chose a similar font for displaying the document.

Translate (character) : specify a translation routine from DOS characters to Windows characters, according
to national accented characters, valid options are : PTB for Portuguese, POL for Central European and
GRM for German characters

lFixed (logical) : TRUE (FIXED) will print a constant number of characters per line, according to the
columns parameter from the NewPage call. The text will be automatically scaled to fit the line. If FALSE
is used, characters will be printed in the same proportion as the chosen font.

49

nScale (numerical) : sets the scale for the font, 100 (default) is the normal scale, and it can be enlarged or
reduced to fit the text in the desired space.

Examples : oPdf:Font(“10.Arial”) will print with Arial fonts using 10 point size characters like =>
abcdefABCDEF12345.

oPdf:Font(“16.Tahoma Bold Underscore”, “CP1250”) will use 16 size characters in Tahoma
font, bold and underlined, special characters will be used from the central European alphabet,

like => abcdefABCDEF12345ăšåý

50

FontDef

• FontDef(family name, file name, embed) => this powerful method enables you to use any font installed in
your system. By defining the font family name, and its file container, you can use any existing font, for non Latin
characters, bar codes, symbols, etc.

Family name (character) : is the font compound name that you will be using latter to create your document.

File name (character) : is the name of the file for that specified font. This file must be in the %SystemRoot
%\Fonts folder or at the current working directory and must be a either a TTF format file, or a AFM/PFB
file. If the file is not found at usage time, font will default to Courier New.

Embed (logical) : indicates if the font should be embedded (incorporated) to the document, if TRUE, the
TTF file will be embedded to the PDF file, making it larger in size, but with a better font definition, if
FALSE, the font will no be incorporated to the file, making it smaller, but eventually having a substitute
font if the same font is not installed at viewing time.

Examples : oPdf:FontDef(“3-9 Barcode”, “FREE3OF9X.TTF”) this will add the barcode TTF font to your
pdf, enabling you to print barcode data.
 oPdf:FontDef(“Avant Garde Book”, “avgardn.ttf”) will allow you to use the Avant Garde
font in your document.

Observation : you must define all the variations that you want to use in a font, there are separate files for
Bold, Italic and Bold Italic fonts, and they must be defined one by one to XbpPDF.

51

Text

• Text(line, column, string, lUTF) => prints a string of text on the page, at line and column position that are
calculated according to page size.

Line (numeric) : is the vertical position where the text will be outputted, this position must be according
to the coordinate system chosen for your document (see NewPage above). If line is NIL, will continue to
print at current line

Column (numeric) : is the horizontal position within the page for the text, according to the coordinate system
specified in the NewPage method. If column is NIL, will print at the next character position.

String (character) : is the string of characters to be outputted at the specified position, if the string does not
fit on the line, it will be lost, no line wrapping is done with this method, for this use the mText method.

lUTF (logic) : indicates if the string is a normal ANSI text (false), or if it is an UNICODE text (true).
(Default is false)

Examples : oPdf:Text(5, 1, “this is a sample”) with print “this is a sample” on line 5, column 1, assuming
the Line/Column coordinate system is in use.

52

mText

• Mtext(init line, init col, text, horizontal alignment, width, lUTF) => Multi line text, automatically fits the
given text into the specified coordinates, aligning the text horizontally relative to init col.

Init line (numeric) : specifies the vertical position according to the coordinate system for the document,
where text output will begin.

Init col (numeric) : specifies the horizontal position for the text output. This parameters is used by XbpPDF
according to the horizontal alignment chosen. On left alignment (standard) and on justified the left margin
of the text is aligned to the specified column, on right alignment the end of the text lines are aligned to the
column, and on center the text is centralized on the column position.

Text (characters) : is the text to be outputted at the document, this text could be several lines of text, separated
by NL ($0D0A) characters, or in the case of justified alignment one long string (there is no limit). Text
should conform to memo fields formats.

Horizontal alignment (numeric) : is the type of alignment to be performed by XbpPDF on adding the text
to your document.

Possible values for horizontal alignment are : Left => 0 (Default)
Right => 1
Center => 2
Justified => 3

Width (numeric) : on justified the optional parameter width specifies the line width, if this parameter is not
present, the width will be of the longest line present at the text.

lUTF (logic) : indicates if the string is a normal ANSI text (false), or if it is an UNICODE text (true).
(Default is false)

Examples : for this example the text will be “This is a sample” (one word on each line)
 Text := “This” + nl + “is” + nl + “a” + “Sample”
 oPdf:Box(10, 0, 18, 20)
 oPdf:Line(14, 0, 14, 20)
 oPdf:Line(10, 10, 14. 10)

 oPdf:mText(10, 10, text, 0) (1)
 oPdf:mText(10, 10, text, 1) (2)
 oPdf:mText(14, 10, text, 2) (3)
 oPdf:mText(18, 10, text, 3, 16) (4)

53

2
 This

Is
A

Sample

This
1
Is
A
Sample

3 This
Is
A

Sample

4 This Is
a Sample

of Justified Text

Notice that all mText calls use column 10, so the positioning of the text varies according to the chosen
alignment.

Text position is calculated according to font/page size specifications, and also according to fixed or
proportional character spacing, proportional character spacing may not align text correctly, so if you use
right or center alignment, please check your character width settings, this setting can be changed either in
the oPdf:Font() call, or changing the oPdf:lFixed var contents.

54

rText

• RText(line, column, string, angle, lUTF) => prints a string of text on the page, rotating to the specified angle,
at line and column position that are calculated according to page size.

Line (numeric) : Vertical position of text according to coordinate system.

Column (numeric) : Horizontal position of text according to coordinate system.

String (character) : Text to be included in the document.

Angle (numeric) : Angle of rotation, ranging from 0 to 360, starting at the normal text position and rotating
counter clockwise back to an horizontal position.

lUTF (logic) : indicates if the string is a normal ANSI text (false), or if it is an UNICODE text (true).
(Default is false)

Examples : oPdf:rText(15, 15, “normal”, 0)
oPdf:rText(15, 25, “90 degrees”, 90)
oPdf:rText(15, 25, “180 degrees”, 180)
oPdf:rText(15, 25, “270 degrees”, 270)

55

TextArc

• TextArc(aPos, nRadius, aEllipse, nStartAngle, nSweepAngle, cText, nAlign, lUTF) => prints a string of text
on the page, in a arc acording to the specified radius and angle, at Xpos and Ypos position that are calculated
according to page size.

aPos (array, { <nX0>, <nY0> }) : aPos is an array of two elements which determines the coordinates for
the center point of the circle. The first element <nX0> specifies the x coordinate and the second element
<nY0> specifies the y coordinate. The unit for the coordinates depends on the coordinate system defined
for the page.

nRadius (numeric) : Radius of arc according to coordinate system.

aEllipse (array { <nX1>, <nY1>, <nX2>, <nY2> } : The parameter aEllipse is needed to draw an ellipse.
It is an array with four elements which designates the end points of both ellipse axes. The coordinates of
both endpoints are calculated by the following equations.
The default value of aEllipse is {1,0,0,1}.

nStartAngle (numeric) : Starting angle to start the text string, ranging from 0 to 360, starting at the normal
text position and rotating counter clockwise back to an horizontal position.

 nSweepAngle (numeric) : is a positive integer which indicates the opening angle for the arc in degrees.

cText (character) : Text to be included in the document.
nAlign (numeric) : 0 => Draw the text in a clockwise direction, align Left

 1 => Draw the text in a clockwise direction, align Right
 2 => Draw the text in a clockwise direction, align Center
 3 => Draw the text in a anti-clockwise direction, align Left
 4 => Draw the text in a anti-clockwise direction, align Right
 5 => Draw the text in a anti-clockwise direction, align Center

lUTF (logic) : indicates if the string is a normal ANSI text (false), or if it is an UNICODE text (true).
(Default is false)

Examples : oPDF:GraArc({1450,1200}, 400, , 350, 90, GRA_OUTLINEFILL)
 oPDF:TextArc({1450,1200}, 370, , 350, 90, "nAlign = 3", 3)

 oPDF:GraArc({1450,1200}, 400, , 80, 90, GRA_OUTLINEFILL)
 oPDF:GraArc({1450,1200}, 400, , 125, 1, GRA_OUTLINEFILL)
 oPDF:TextArc({1450,1200}, 370, , 80, 90, "nAlign = 5", 5)

 oPDF:GraArc({1450,1200}, 400, , 170, 90, GRA_OUTLINEFILL)
 oPDF:TextArc({1450,1200}, 370, , 170, 90, "nAlign = 4", 4)

56

 oPDF:TextArc({1450,1200}, 300, , 350, 90, "nAlign = 0", 0)
 oPDF:TextArc({1450,1200}, 300, , 80, 90, "nAlign = 2", 2)
 oPDF:TextArc({1450,1200}, 300, , 170, 90, "nAlign = 1", 1)

57

TextColor

• TextColor([color]) => specify the color to the following text.

color (numeric) : informs the color for the following text, constants from GRA.CH can be used in the form
of GRA_CLR_… or any other RGB number (created with GraMakeRGBColor()) can be used. Default is
GRA_CLR_BLACK.

58

ChineseFonts

• ChineseFonts([en]) => enable the use of chinese MingLiU font.

this command will make available the MingLiU chinese font with variations of bold and italic, the usage
should be pdf:Font("anysize.MingLiU"), or "MingLiU,Bold", "MingLiU,Italic" and "MingLiU,BoldItalic"
using "," (comma) instead of space between the font name and the variation.

59

TextWidth

• TextWidth([cText], lUTF) => Returns the width of a given text.

this command will return the width of a given text in PDF units, each PDF unit equals 1/72 of a inch (72
DPI), it can be converted to Xbase GRA_PU_LOMETRIC using x GRA_PU_LOMETRIC = y PDF units /
72 * 254

lUTF (logic) : indicates if the string is a normal ANSI text (false), or if it is an UNICODE text (true).
(Default is false)

example : 595 PDF units = (595 / 72 * 254) = 2100 GRA_PU_LOMETRIC

60

GetTextFrom

• GetTextFrom(nLeft, nTop, nWidth, nHeight, cDelim, lCSystem) => Returns a string of words separated by
cDelim within the specified area on the page.

All parameter must be in GRA_PU_LOMETRIC units
 cDelim defaults to "," (comma)
lCSystem defauts to False (.f.), if True then all parameters must be in the same coordinate system as in
NewPage()

* values of 0 for all area coordinates will return the full page.

example : cTxt := oPdf:GetTextFrom(430, 1330, 200, 40) will extract all text from within the area.

430, 1330 (from bottom left of page)
123 456 789 abc def geh
<----------------------------->
 200

will return a string like "123,456,789,abc,def,geh"

or

cTxt := oPdf:GetTextFrom(4, 33, 30, 1, ";", .T.) will extract all text from within the area.

123 456 789 abc def geh
<----------------------------->
 30

will return a string like "123;456;789;abc;def;geh" separated by ; from line 33, column 4, width 30 characters,
1 line

61

Form Fields

Those are methods to create and/or process form fields in the PDF

62

FormAdd

• FormAdd(nType, cTitle, nLin, nCol, nHig, nLen, cFont) => will create (add) a new form field into the pdf.

nType (numeric) : is the form type, valid types are:

1 Text
2 PushButton
3 CheckBox
4 RadioButton
5 Choice
6 Signature
7 Parent

cTitle (character) : Form Field Title, the identification of the form field.

nLin (numeric) : the line number (vertical position) of the form field, according to the coordinate system
in use (see NewPage()).

nCol (numeric) : the column number (horizontal position) of the form field, according to the coordinate
system in use (see NewPage()).

nLen (numeric) : the length (width) of the form field.

nHig (numeric) : the height of the form field.

cFont (character) : the font compound name to be used in the new field.

Examples : oPdf:FormAdd(1, "Name", 10, 5, 50, 1, "12.Arial") will create a text field with the title of
"Name", in line 10, column 5, with a width of 50 characters and a height of 1 line, using font Arial, with
size 12.

63

FormGet

FormGet() => returns a five element array of form fields present in the current PDF.

The content of the array is:
1 Field Caption
2 Field Title
3 Field Content (or empty)
4 Field Type (See FormAdd for field types)
5 Maximum Field Length (or 0 if not available)

Examples : aFields := oPdf:FormGet()

64

FormValue

FormValue(xIdent, xValue) => will fill the specified field with the content.

xIdent (numeric or character) : is the form field identifier, it can be the field number (element number of
the fields array returned by FormGet()), or the field title.

Examples : oPdf:FormValue(1, "John Smith") will set field number 1 with the contents of "John Smith".

 oPdf:FormValue("Name", "John Smith") will set the pdf form field with a title of "Name"
to "John Smith".

65

FormFlatt

FormFlatt(nField) => will flatt the specified form field into the pdf.

nField (numeric) : is the form field number, equivalent to the element number within the array returned
by FormGet().

This method will flatten the field into the PDF, meaning it will no longer be a editable form field, and the
contents (if any) will be fixed to that position in the file. Once the field is flattened, it will no longer exist,
and all subsequent field numbers will be decreased by 1, so the corresponded element in the fields array
returned by FormGet() will no longer be valid, and that element should be removed from the array with
aDel() or any other method.

Examples : oPdf:FormFlatt(10) will flatten the 10th field of the pdf, engraving its contents into the file, any
other field after this on will have its number decreased, so the 11th field will become the 10th.

66

Drawing

This group of methods can be used to load drawing and images to your document.

67

Line

• Line(init line, init col, final line, final col) => draws a line from initial line, initial column position to final line,
final column position.

Init line (numeric) : Vertical position of line start according to coordinate system.

Init col (numeric) : Horizontal position to start drawing the line.

Final line (numeric) : Vertical position of line ending.

Final col (numeric) : Horizontal position of line ending.

68

Box

• Box(init line, init col, final line, final col, [fill percent]) => draws a box (rectangle) from initial line, initial
column position to final line, final column position, and optionally fills the create shape with gray according to
fill percent value.

Init line (numeric) : Vertical position of box corner according to coordinate system.

Init col (numeric) : Horizontal position of box corner to start drawing the box.

Final line (numeric) : Vertical position of opposite box corner.

Final col (numeric) : Horizontal position of opposite box corner.

Fill percent (numeric) : numeric value in the range of 0 to 100, indicating the amount of gray that should
be used to fill the box, the higher the number the darker will be the filling, a value
between 5 to 20 will provide a gray area as a background, suitable for foreground
text, or other data. Default for fill percent is 0 (none).

69

Shape

• Shape(points array, line color, [fill percent], [fill color]) => creates a geometric shape, defined by and array
of points {{l1,c1},{l2,c2}…..}, drawn in the specified color (default is black), and optionally fills the create shape
with gray according to fill percent value.

Points array (array) : An array of numbers pairs, giving vertical and horizontal positions, for every point
in the shape, the quantity of pairs is unlimited, allowing the creation of complex
figures of any kind.

Line color (numeric) : informs the color of the surrounding line for the shape, constants from GRA.CH
can be used in the form of GRA_CLR_… or any other RGB number (created with
GraMakeRGBColor()) can be used.

Fill percent (numeric) : numeric value in the range of 0 to 100, indicating the amount of gray that should
be used to fill the shape, the higher the number the darker will be the filling, a value
between 5 to 20 will provide a gray area as a background, suitable for foreground
text, or other data. Default for fill percent is 0 (none).

Fill color (numeric) : sets the color to be used to fill the shape, to use this option, you should set the
the Fill percent to -1 (minus one), and the shape will be filled with the specified
color instead of gray.

Example : oPdf:Shape({ {10, 10}, {5, 15}, {10, 20} }, GRA_CLR_BLUE) will create a
blue triangle at the specified points.

70

Image

• Image(init line, init col, final line, final col, image name, [ratio], compress) => draws an image from initial
line, initial column position to final line, final column position. Ratio indicates if the original ratio of the image
is to be kept, or if the image should fill the entire area. Image can be JPEG, TIFF, BMP, PNG or GIF, file, and
extension is mandatory.

Init line (numeric) : Vertical position of image corner according to coordinate system, default is 0.

Init col (numeric) : Horizontal position of image corner to start drawing the box, default is 0.

Final line (numeric) : Vertical position of opposite image corner, default is vertical page size (the hole page).

Final col (numeric) : Horizontal position of opposite image corner, default is horizontal page size (the
hole page).

Image name (character/Bitmap Object) : Name of the image file to be included in the document, if the file
is in a different folder as the current one, the full path should be given. Also the file
type (JPEG, BMP or PNG) should be included in the name. As an alternative and
XbpBitmap object can be passed as parameter, allowing an easy conversion from a
XbpPresSpace into a PDF file.

Ratio (logical) : Ratio is true or false (.t. or .f.) indicating if the original ratio of the image proportion is
to be kept, or if the image should fill the entire area. If ratio is true, then initial line
and initial col are used to calculate the positioning of the image, and the height will
be calculated proportional to the width of the image. If the image is passed as an
XbpBitmap object then ratio TRUE will display the image in the whole page.

Compress (numeric) : is a number from 0 to 100, indicating the compression to be done on the image, lower
numbers results in better quality, but a larger PDF file, larger numbers results in less
quality, but smaller file sizes.

Example : oPdf:Image(5, 5, 20, 60, "Image.JPG") will draw the contents of Image.JPG into
line 5, column 5 thru line 20, column 60

 oPdf:Image(, , , , oBmp, .t.) will draw the contents of the Bitmap object oBmp
into the whole page.

Note : This new implementation will allow the integration of XbasePDF class and TD library (version 7
and above) developed by Clayton Jones. TD is a wonderful tool for Xbase++ developers, and can be found
at http://www.cjcom.net.

71

72

LineColor

• LineColor([color]) => specify the color to the following lines.

Line color (numeric) : informs the color of the following lines, constants from GRA.CH can be used in
the form of GRA_CLR_… or any other RGB number (created with GraMakeRGBColor()) can be used.
Default is GRA_CLR_BLACK.

73

LineType

• LineType([aType]) => specify the type of line to draw.

aType (array) : An array of numeric values. Alternate values are used for dashes and spaces. A period must
be used for numbers with decimal fractions.

For example, to make a dash-dot-dot pattern the following could be used: {20.5,10,11,10,11,10}.
For a continuous line, use "0" => oPdf:LineType({0})

74

BoxColor

• BoxColor([color],[fill color]) => specify the colors to the following box. First parameter is color for the box
lines, and second parameter is color for filling the box (background).

color (numeric) : informs the color drawing the following boxes, constants from GRA.CH can be used in the
form of GRA_CLR_… or any other RGB number (created with GraMakeRGBColor())
can be used. Default is GRA_CLR_BLACK.

Fill color (numeric) : informs the color for the filling of boxes, constants from GRA.CH can be used in the
form of GRA_CLR_… or any other RGB number (created with GraMakeRGBColor())
can be used. Default is GRA_CLR_WHITE (no filling).

Examples : oPdf:BoxColor(GRA_CLR_BLUE, GRA_CLR_RED) followed by a oPdf:Box() call,
will draw the a blue box with a red inside.

75

LineWidth

• LineWidth([width]) => the width of the following lines.

Width (numeric) : the width for the lines, starting with 1 and up, the higher the number, the thicker the line.
Default is 1.

76

Charts

Those are Chart drawing methods. They can be used to create simple charts in your document, and are build using Box
 Lines, Shapes and Text methods.

77

BarChart

• BarChart(init line, init col, height, width, data, data titles, chart title, color1, color2, nMin, nMax, nSteps,

nGrTit) => draws a bar chart, at position init line, init col with size height, width, using the values in data array, for
each bar, a title in data titles is displayed. Bars are drawn using color1 for outline, and color2 for filling. A title
can be displayed at the top/center of the chart using the chart title parameter. See a sample at Charts.PDF

Init line (numeric)
:

Vertical position of chart corner according to coordinate system.

Init col (numeric) : Horizontal position of corner to start drawing the chart.

Height (numeric) : Height of box containing the chart.

Width (numeric) :

Width of box containing the chart.

Data (array) : An array of data values to be charted, one bar will be drawn for each element of the
array, automatic scaling will be calculated according to lowest/highest value present in
the array if nMin, nMax and nSteps is not specified.

Data titles (array)
:

An array containing titles for each element in the data array, those titles will be displayed
under each bar, so the quantity of characters in each title should not be long, so as to
fit under the bar.

Chart title
(character) :

Title of the chart, will be displayed on the center of the chart top row.

Color1 (numeric) : Color for the outline of the drawn bars. Conforms to color definition in GRA.CH or
any valid RGB color.

Color2 (numeric) : Color for the filling of the drawn bars. Conforms to color definition in GRA.CH or any
valid RGB color.

nMin :

The minimum value for the vertical axis. Default is the minimum value in the data.

nMax : The maximum value for the vertical axis. Default is the maximum value in the data.

nSteps : The quantity of steps of the scale in the vertical axis of the chart. Default is 10

nGrTit : The angle at which the bars title will be drawn, default is 45º

78

Example : oPdf:BarChart(65, 10, 14, 55, data, titu, "Bar Chart Sample", GRA_CLR_BLUE,

GRA_CLR_YELLOW)
 this will draw a bar chart with blue outlined bars and yellow fillings. See

Demo.PDF for more details.

79

LineChart

• LineChart(init line, init col, height, width, data, data titles, chart title, colors, nMin, nMax, nSteps) => draws
a line chart, at position init line, init col with size height, width, using the values in data array, for each position, a
title in data titles is displayed. Multiple lines can be drawn, each one will have its color from the colors array. A
title can be displayed at the top/center of the chart using the chart title parameter. See a sample at Charts.PDF

Init line (numeric)
:

Vertical position of chart corner according to coordinate system.

Init col (numeric) : Horizontal position of corner to start drawing the chart.

Height (numeric) : Height of box containing the chart.

Width (numeric) :

Width of box containing the chart.

Data (array) : An array of arrays. Each sub array contains data values to be charted, one line will be
drawn for each element of the sub array, using different colors for each line, automatic
scaling will be calculated according to lowest/highest value present in all the array.

Data titles (array)
:

An array containing titles for each sub array in the data array, those titles will be
displayed at the bottom of the chart.

Chart title
(character) :

Title of the chart, will be displayed on the center of the chart top row.

Colors (array) : An array of colors for the lines of the chart, should have as many elements as sub arrays
in the data array. Conforms to color definition in GRA.CH or any valid RGB color.

nMin :

The minimum value for the vertical axis. Default is the minimum value in the data.

nMax : The maximum value for the vertical axis. Default is the maximum value in the data.

nSteps : The quantity of steps of the scale in the vertical axis of the chart. Default is 10

Example : oPdf:LineChart(44, 10, 14, 50, data, titu, "Line Chart Sample", { GRA_CLR_BLUE,
GRA_CLR_RED })

 this will draw a line chart with blue and red lines. See Demo.PDF for more details.

80

81

PieChart

• PieChart(init line, init col, radius, data, data titles, chart title) => draws a pie chart, at position init line, init
col with size radius, using the values in data array, for each position, a title in data titles is displayed. Each pie
“slice” will have its color. A title can be displayed at the top/center of the chart using the chart title parameter.
See a sample at Charts.PDF

Init line (numeric) : Vertical position of chart corner according to coordinate system.

Init col (numeric) : Horizontal position of corner to start drawing the chart.

Radius (numeric) : Height of box containing the chart.

Data (array) : An array of data values to be charted, one pie slice will be drawn for each element
of the array, using different colors for each slice.

Data titles (array) : An array containing titles for each element in the data array, those titles will be
displayed next to each slice in the chart.

Chart title (character) : Title of the chart, will be displayed on the center of the chart top row.

Example : oPdf:PieChart(15, 30, 5, data, titu, "Pie Chart Sample")
 This will draw a pie chart. See Demo.PDF for more details.

82

83

Xbase Graxx Methods

XbasePDF class methods that emulate Xbase++ functions.

84

GraSetAttrArea

GraSetAttrArea(aAttributes) => Sets attributes for area filling. The array is the same as in Xbase++, and
the elements considered are :

Array element Description

GRA_AA_COLOR Foreground color

GRA_AA_BACKCOLOR Background color

GRA_AA_BGMIXMODE Color mix attribute for
background

GRA_AA_SYMBOL Fill pattern

85

GraSetAttrLine

GraSetAttrLine(aAttributes) => Sets attributes for drawing lines. The array is the same as in Xbase++,
and the elements considered are :

Array element Description

GRA_AL_COLOR Foreground color
GRA_AL_WIDTH Line width
GRA_AL_TYPE Line type

86

GraSetAttrMarker

GraSetAttrMarker(aAttributes) => Sets attributes for drawing markers. The array is the same as in Xbase
++, and the elements considered are :

Array element Description

GRA_AM_COLOR Foreground color
GRA_AM_SYMBOL Symbol for marker
GRA_AM_BOX Dimension of a marker in x and y direction

87

GraSetAttrString

GraSetAttrString(aAttributes) => Sets attributes for drawing strings with GraStringAt(). The array is the
same as in Xbase++, and the elements considered are :

Array element Description

GRA_AS_COLOR Foreground color
GRA_AS_ANGLE Angle at which characters are output

88

GraSetColor

GraSetColor(nForegroundColor, nBackgroundColor) => Sets colors for Foreground and Background
drawing.

89

GraSetFont

GraSetFont(oFont/cFont) => Sets the font for subsequent writing with GraStringAt(). The font can be
specified as a XbpFont object, or the font compound name.

90

GraStringAt

GraStringAt(aPoint, cText) => Writes the cText string on the aPoint in the page. aPoint is an array of x,y
coordinates, according to the chosen coordinate system (see the NewPage() Method)

91

GraPos

GraPos(aPoint) => Moves the pen to aPoint in the page. aPoint is an array of x,y coordinates, according to
the chosen coordinate system (see the NewPage() Method)

92

GraQueryTextBox

GraQueryTextBox(cText) => The function GraQueryTextBox() returns a two dimensional array of five elements.

Each element contains a subarray with two elements which are the relative coordinates for five points. The first four elements
designate the corner points for a parallelogram which represents the boundaries of the specified character string <cString> .
The fifth element is the pen position at which the pen is found after the character string is drawn with GraStringAt():

aPoints := { { nXLeft , nYTop }, ; // upper left corner
 { nXLeft , nYBottom }, ; // lower left corner
 { nXRight, nYTop }, ; // upper right corner
 { nXRight, nYBottom }, ; // lower right corner
 { nXPen , nYPen } } // pen position

The points designate the boundaries if the string is displayed at the origin of the coordinate system (the point {0,0}). To
calculate the actual coordinates for a box surrounding a string, add the x and y positions at which <cString> is drawn.

93

GraArc

GraArc([<aCenter>], <nRadius>, [<aEllipse>], [<nStartAngle>], [<nSweepAngle>]) =>
Draws an Arc.Circles, arcs and ellipses are drawn using the function GraArc(). By default a circle is drawn as
an outline with the color and the line width set by the function GraSetAttrLine(). The fill pattern and fill color
for a filled circle can be specified with GraSetAttrArea(). The default for the fill pattern is the #define constant
GRA_SYM_SOLID.

Parameters are :

<aCenter>:= { <nX0>, <nY0> }
<aCenter> is an array of two elements which determines the coordinates for the center point of
the circle. The first element <nX0> specifies the x coordinate and the second element <nY0>
specifies the y coordinate. The unit for the coordinates depends on the coordinate system defined
for the presentation space. If no presentation space is specified, values for the coordinates are
given in pixels, which is the unit for a window. The origin for the coordinates (the point {0,0})
is at the lower left. If <aCenter> is not specified, the center point of the circle is the current
pen position.

<nRadius>
<nRadius> is a positive integer which indicates the radius of the circle.

<aEllipse> := { <nX1>, <nY1>, <nX2>, <nY2> }
The parameter <aEllipse> is needed to draw an ellipse. It is an array with four elements which
designates the end points of both ellipse axes. The coordinates of both endpoints are calculated
by the following equations (see sections "Description" and "Example"):

nXhorizontal := nX0 + nRadius * nX1 // ellipse axis in the
nYhorizontal := nY0 + nRadius * nY1 // x direction (horizontal)
nXvertical := nX0 + nRadius * nX2 // ellipse axis in the
nYvertical := nY0 + nRadius * nY2 // y direction (vertical)

The default value of <aEllipse> is {1,0,0,1}.

<nStartAngle>
<nStartAngle> determines the starting point from which an arc is drawn. It is a positive integer
which indicates the number of degrees the starting point of the arc deviates in the counter
clockwise direction from horizontal.

<nSweepAngle>
<nSweepAngle> is a positive integer which indicates the opening angle for the arc in degrees.

94

95

GraBox

GraBox([<aLeftBottom>], <aRightTop>, [<nFill>], [<nHRadius>], [<nVRadius>]) => Draws
a rectangle.Rectangles are drawn with the function GraBox(). By default, output is an outline, with the color and line
width set by the function GraSetAttrLine(). For a filled rectangle, the fill pattern and the fill color are determined
by GraSetAttrArea(). The default pattern corresponds to the #define constant GRA_SYM_SOLID.

Parameters are :

<aLeftBottom> := { <nX1>, <nY1> }
<aLeftBottom> is an array of two elements which determines the coordinates for the lower
left corner of the rectangle. The first element <nX1> designates the x coordinate and the
second element <nY1> the y coordinate. The unit for the coordinates depends on the
coordinate system defined for the presentation space. If no presentation space is specified,
the values for the coordinates are given in pixels, which is the unit for a window. The origin
for the coordinates (point {0,0}) is at the lower left. If <aLeftBottom> is not specified, the
lower left corner of the rectangle is the current pen position.

<aRightTop> := { <nX2>, <nY2> }
<aRightTop> is an array of two elements which contains the coordinates for the upper right
corner of the rectangle.

<nFill>
The optional argument <nFill> specifies whether the rectangle is drawn as an outline or is
filled. The following table shows the #define constants from the GRA.CH file to use for
<nFill> :

Fill attributes for GraBox()
Constant Description
GRA_FILL Fills rectangle
GRA_OUTLINE *) Only draws rectangle border
GRA_OUTLINEFILL Draws rectangle border and fills

*) Default value

<nHRadius>
The parameters <nHRadius> and <nVRadius> determine how much to round the corners
of the rectangle. Both are positive integers which, taken together, determine the distance
(radius of curvature) from a corner to the middle of the rectangle. This distance provides the
measure from which the corners are rounded. <nHRadius> indicates the horizontal distance.
When <nHRadius> is equal to <nVRadius> , the corners are rounded by a 90ø arc.

96

<nVRadius>
<nVRadius> determines the vertical curvature radius for rounding the corners. For rounded
corners, both parameters <nHRadius> and <nVRadius> must be greater than 0.

97

GraLine

GraLine([<aStartPoint>], <aEndPoint>) => The function GraLine() is a graphic primitive which draws
a line in a presentation space. In order to draw a line, two points must be specified. If the first point <aStartPoint>
is not specified, the line begins at the current pen position. Various line types are available (solid, dashed, dotted,
etc.). Line types must be selected before output of the line by calling the function GraSetAttrLine(). After GraLine()
returns, the pen is positioned at <aEndPoint> .

Parameters Are

<aStartPoint> := { <nXStart>, <nYStart> }
<aStartPoint> is an array of two elements which determines the coordinates for the origin
of the line. The first element <nXStart> specifies the x coordinate and the second element
<nYStart> specifies the y coordinate. The unit for the coordinates depends on the coordinate
system defined for the presentation space. If no presentation space is defined, the values
for the coordinates are given in pixels, which is the unit for a window. The origin for the
coordinates (the point {0,0}) is at the lower left. If <aStartPoint> is not specified, the line
begins at the current pen position.

<aEndPoint> := { <nXEnd>, <nYEnd> }
<aEndPoint> is an array of two elements which contains the coordinates for the end point
of the line.

98

GraMarker

GraMarker([<aPoint>]) => The function GraMarker() marks a single point at the position <aPoint> .
Various marker types are available (cross, circle, square etc.). They must be selected before the output of a marker by
calling the function GraSetAttrMarker(). The default marker is the #define constant GRA_MARKSYM_CROSS.
The function GraMarker() does not change the pen position.

Parameters are :

<aPoint>:= { <nX>, <nY> }
<aPoint> is an array of two elements which determines the coordinates for the point at
which the marker is drawn. The first element <nX> specifies the x coordinate and the
second element <nY> specifies the y coordinate. The unit for the coordinates depends on the
coordinate system defined for the presentation space. If no presentation space is specified,
the values for the coordinates are specified in pixels, which is the unit for a window. The
origin for the coordinates (the point {0,0}) is the lower left. If <aPoint> is not specified, the
marker is drawn at the current pen position.

99

GraPathBegin

GraPathBegin() => The function GraPathBegin() initializes a graphic path. A path is formed with
graphic primitives like GraLine(), GraArc(), GraSpline() or GraStringAt() and must be closed with the function
GraPathEnd(). The graphic primitives executed between GraPathBegin() and GraPathEnd() define the border for
a path which can be formed in a variety of ways. During the path definition no output occurs. The defined path is
made visible using the functions GraPathFill() and GraPathOutline() after calling the function GraPathEnd().

A graphic path is always used when complex structured areas are outlined or filled. An example of such a
complex area is a character string whose letters are filled with a pattern. A graphic path can consist of any
number of enclosed areas (each letter in a string is an area, all the letters form the graphic path which is filled
or outlined). If characters are used in the definition of a graphics path, they must be provided by a vector font
because bitmap fonts do not use graphic primitives to display characters.

The functions GraPathBegin() and GraPathEnd() cannot be nested. After a call to GraPathBegin(), a call
to GraPathEnd() must occur so that graphic primitives can again be used for normal drawing rather than
being interpreted as part of a path definition. The graphic path is made visible using a path operation such
as GraPathFill() or GraPathOutline(). For each presentation space, only a single graphic path is supported,
which is discarded as soon as a path operation like "Fill" or "Outline" is executed.

100

GraPathEnd

GraPathEnd([<lCloseFigure>]) => The function GraPathEnd() ends the definition of a graphic path. It
must always be executed after a call of GraPathBegin() (see GraPathBegin()) and before the execution of a path
operation. Path operations are executed by the functions GraPathFill(), GraPathClip() and GraPathOutline(). After
a path operation occurs, the path definition is discarded.

Parameters are :

<lCloseFigure>
<lCloseFigure> is a logical value specifying whether the drawing defined as a graphical path
is to be closed. The default value is .F. (false), meaning the path includes only the defined
graphic primitives. If <lCloseFigure> equals .T. (true), the starting point of the first graphic
primitive is connected to the end point of the last graphic primitive.

101

GraPathOutline

GraOutline() => The function GraPathOutline() outlines a graphic path defined by GraPathBegin() /
GraPathEnd(). After the call to GraPathOutline(), the definition of the path is discarded.

102

GraPathFill

GraPathFill([<nFillMode>]) => The function GraPathFill() fills a graphic path defined by GraPathBegin() /
GraPathEnd() with a pattern. The fill pattern must have been previously selected using the function
GraSetAttrArea(). After the call to GraPathFill() the definition of the path is discarded.

Parameters are :

<nFillMode>
<nFillMode> specifies the mode for filling. This is significant only with complex paths.
Complex paths consist of several, mutual overlapping areas. For this parameter, one of the
two #define constants GRA_PATH_FILL_ALTERNATE or GRA_PATH_FILL_WINDING
are used. The default value is GRA_PATH_FILL_ALTERNATE.

103

TextBox

TextBox([<aStart>], [<aEnd>], <cText>, [<lBox>], [nLType]) => The method TextBox() writes
a string to the PDF and then draws a box around it.

Parameters are :

<aStart>
<aStart> specifies the starting position for the text, it will also be the lower left corner of
the box.

<aEnd>
<aEnd> specifies the upper right corner for the box

<cText>
<cText> is the string of characters to be placed in the PDF.

<lBox>
<lBox> is a logic value (True or False) to draw or not the box around the text.

<nLType>
<nLType> is the line type to be used, valid line types are GRA_AL values from
GraSetAttrLine

104

PageBox

PageBox() => The method PageBox() will return the dimensions of the current page.

this will return an array of 2 elements, the width and the height of the current page. Sizes will be returned in
PDF units (1/72 of a inch), that can be converted to GRA_PU_LOMETRIC using the formula:

y GRA_PU_LOMETRIC = x PDF Units / 72 * 254

Example: 595 PDF units = (594 / 72 * 254) = 2100 GRA_PU_LOMETRIC

105

XppPDF.ch

XppPDF.ch is a preprocessor file that will (almost) automatically convert all your existing reports to generate
PDF files.

Including this preprocessor file at compile time, all your Gra... calls will be translated to an internal XbpPDF
routine that will test for the type of object being passed as the first parameter. If this objec is a PDF object,
than a PDF file will be created, if it is a Xbase++ object like a XbpPresSpace or a XbpPrinter, then normal
processing will continue. With this approach minimal changes have to be made to your existing reports in
order to use the XbasePDF class.

An example of how to use this new feature :

#include "xpppdf.ch"

PROCEDURE MAIN

 aSize := AppDeskTop():CurrentSize()
 aPos := AppDeskTop():Currentpos()
 aSize[2] := aSize[2] - 45
 oDlg := xbpDialog():new(,,aPos,aSize)
 oDlg:Create()

 oPs := oDlg:DrawingArea:LockPS()
 oFont := xbpFont():New(oPs)
 oFont:Create('12.Times New Roman')

 oPdf := xbppdf():New()
 oPdf:Create("gra.pdf")
 oPdf:NewPage(, , , , ,1)

 Report(oPdf)
 opdf:enddoc(.t.)

 Report(oPs)

 nEvent := 0
 do while nEvent <> xbeP_Close
 nEvent := AppEvent(@mp1, @mp2, @obr)

106

 obr:handleEvent(nEvent, mp1, mp2)
 Enddo

Return

FUNCTION Report(ops)

 aAttra := array(GRA_AA_COUNT)

 aAttra[GRA_AA_COLOR] := GRA_CLR_WHITE
 GraSetAttrArea(ops, aAttra)
 GraBox(ops, {0,0}, aSize, GRA_OUTLINEFILL)

 aAttra[GRA_AA_COLOR] := GRA_CLR_YELLOW
 GraSetAttrArea(ops, aAttra)
 GraBox(ops, {80,100}, {220,300}, GRA_OUTLINEFILL)

 GraSetFont(ops, oFont)
 GraSetColor(ops, GRA_CLR_BLUE)
 GraStringAt(ops, {100,200}, "Hello world!")

Return(.t.)

As you can see creating two different objects,a XbpPDF object (oPdf) and a PresSpace (oPs) you can call the
same function (Report) and the preprocessor together with the XbpPDF class, will do the rest. The exact same
report that is seen on the screen, is saved as a PDF file, and programming efforts is minimal.

107

PDF Creation Class Variables

 oDoc (object)

main pdf object.

 oPage (object)

current page object.

 cName (character)

file name for the pdf.

 aTam (array)

two elements array, for page width and height in 1/72 inches.

 nCoordSystem (numeric)

coordinate system in use.

 cFontn (character)

current font name.

 nFonts (numeric)

current font size.

 cEncs (character)

current font encoding.

 aFonts (array)

used fonts in this document.

 aAvFonts (array)

available true type fonts and their file names.

 oOutline (object)

root parent for outline.

 nAlt (numeric)

height of line.

 nLrg (numeric)

character width.

 nSlin (numeric)

last line number, current vertical position.

 nScol (numeric)

last column number, current horizontal position.

 nPag (numeric)

page number.

 nLmg (numeric)

left margin.

 nTmg (numeric)

top margin.

108

 lUscore (logic)

underscore text.

 nFcor (numeric)

filling color for boxes and shapes.

 nScor (numeric)

stroke color for lines, boxes and shapes.

 nTcor (numeric)

text color.

 lFixed (logical) fixed or proportional character spacing.

 lDebug (logical) creates a PDF.LOG file with all calls to the class

 lView (logical)

uses the View() method to open the PDF (:EndDoc)

109

View & Print

Class Methods used to View and/or Print existing PDF files.

110

Intro

This class was created to fill a need to Xbase++ users around the world, as noted by the many threads existing
in the Xbase News Group about viewing and printing PDF files from Xbase++ applications.
This is a very simple class with very little effort in terms of programming, of course implementing it will
require code changes, but the benefits are worth it.

An example of a simple program would be :

PROCEDURE MAIN
 pdf := XbpPDF():New()

// Initializes the PDF object

 pdf:Create()

// Creates the ViP object

 pdf:View("Demo.PDF")

// Views the loaded PDF on screen

 pdf:Print("Demo.PDF")

// Prints the file to any windows printer

 pdf:Destroy()

// Terminates and release resources

Return

111

VipInit

VipInit(cFileName) => VipInit initializes all class variables, and should be used
only if called right after the create() call, once all internal variables and controls are
set, it calls VipOpen to load the file into memory.

cFileName (character) : full filename of PDF file (including path, if not in current folder)

This method can be used to open an existing PDF for further editing or just viewing it and /or printing it.

Returns True or False (.t. / .f.) if the PDF file was successfully loaded into memory

112

VipOpen

VipOpen(cFileName) => VipOpen only loads the file into memory, assuming
that all variables and controls are already initialized, either by a previous VipInit(),
NewPage() or any other call that is used at the beginning of the process.

cFileName (character) : full filename of PDF file (including path, if not in current folder)

This method can be used to open an existing PDF for further editing or just viewing it and /or printing it.

Returns True or False (.t. / .f.) if the PDF file was successfully loaded into memory

113

View

View(cFileName, [nZoom], [lMaximize], [oParent], [oOwner], [aPos], [aSize], [lModal], [lNoPrint], [nIPag]
) => Show's the previous loaded file on the screen.

cFileName (character) : full filename of PDF file (including path, if not in current folder)

nZoom (numerical) : the initial zoom setting for viewing the pdf, options are:
• any number higher than 0, 100 is 100 %, default is 100%.
• -1 => H - Will set Zomm factor to Height of the dialog window
• -2 => W - Will set Zomm factor to Width of the dialog window
• -3 => F - Will set Zomm factor to Fit the dialog window

lMaximize (logical) : show in full screen mode (default), or normal window

oParent (object) : is the parent dialog for the preview window, default is AppDesktop

oOwner (object) : is the owner dialog for the preview window, default is AppWindow

aPos (array) : position for the preview window, default is owner center

aSize (array) : Size of preview window, default is owner size

lModal (logic) : Opens the preview window in Modal mode, in this case oParent must be AppDesktop

lNoPrint (logic) : Don't display the "Print" button in the preview window

nIPag (numeric) : Initial page number to display, defaults to 1.

View window navigation :

or [-] : Zoom out

or [+] : Zoom in

or [H] : Zoom to Height

114

or [W] : Zoom to Width

or [F] : Zoom to Fit

or [1] : First Page

or [<] : Previous Page

or [>] : Next Page

or [999] : Last Page

: Displays 1 page per screen

: Displays 2 pages per screen, divided vertically (side by side)

: Displays 2 pages per screen, divided horizontally (top and bottom)

or [P] : Print

or [ESC] : Exit View window

115

Print

Print(cFileName, [nFirst] [,nLast], [nFit], [nPQual]) => Print's the named file to any Windows Printer device.

cFileName (character) : full filename of PDF file (including path, if not in current folder) to be printed.

nFirst (numeric) : number of first page to be printed, default is 1.

nLast (numeric) : number of last page to be printed, default is number of pages in pdf file.

nFit (numeric) : page scaling, options are :
 0 = no scaling
 1 = Fit to Page
 2 = Shrink larger pages
 (Default is 1 = Fit to Page)

nPQual (numeric) : printing (rendering) quality,
 1 = high,
 2 = medium,
 3 = low,
 4 = draft
 or an exact DPI, for example 600

Obs: The PDF will be printed to the printer object specified in the :Create() method. If none, then a Printer
Dialog will be shown to select the desired printer. All printer specifications like page size, orientation, number
of copies, paper bins, collate, duplex etc will be obtained from that object.

116

PrintA

PrintA(cFileName, [nFirst] [,nLast], [nFit], [nPQual]) => Print's the named file to any Windows Printer device.

PrintA is an alternative print method with different rendering options, fell free to try and compare the results
a choose whichever gives you a better result.

cFileName (character) : full filename of PDF file (including path, if not in current folder) to be printed.

nFirst (numeric) : number of first page to be printed, default is 1.

nLast (numeric) : number of last page to be printed, default is number of pages in pdf file.

nFit (numeric) : page scaling, options are :
 0 = no scaling
 1 = Fit to Page
 2 = Shrink larger pages
 (Default is 1 = Fit to Page)

nPQual (numeric) : printing (rendering) quality,
 1 = high,
 2 = medium,
 3 = low,
 4 = draft
 or an exact DPI, for example 600

Obs: The PDF will be printed to the printer object specified in the :Create() method. If none, then a Printer
Dialog will be shown to select the desired printer. All printer specifications like page size, orientation, number
of copies, paper bins, collate, duplex etc will be obtained from that object.

117

PrintO

PrintO(cFileName, [nFirst] [,nLast], [nFit], [nPQual]) => Print's the named file to any Windows Printer
device.

PrintO is an alternative print method with different rendering options, fell free to try and compare the results
a choose whichever gives you a better result.

cFileName (character) : full filename of PDF file (including path, if not in current folder) to be printed.

nFirst (numeric) : number of first page to be printed, default is 1.

nLast (numeric) : number of last page to be printed, default is number of pages in pdf file.

nFit (numeric) : page scaling, options are :
 0 = no scaling
 1 = Fit to Page
 2 = Shrink larger pages
 (Default is 1 = Fit to Page)

nPQual (numeric) : printing (rendering) quality,
 1 = high,
 2 = medium,
 3 = low,
 4 = draft
 or an exact DPI, for example 600

Obs: The PDF will be printed to the printer object specified in the :Create() method. If none, then a Printer
Dialog will be shown to select the desired printer. All printer specifications like page size, orientation, number
of copies, paper bins, collate, duplex etc will be obtained from that object.

118

RenderToPS

RenderToPS(cFileName, oPspace ,nRes, nPag) => Render's the named file to any Xbase Presentation Space.
This method can be used to create your own viewer, to print PDF files, or any other desired usage.

cFileName (character) : full filename of PDF file (including path, if not in current folder) to be rendered.

oPspace (object) : Xbase++ presentation space object, it can be linked to a screen dialog or to a printer object

nRes (numeric) : Resolution (DPI) for the rendering, default is 150. Any resolution above 300 DPI can cause
an excessive amount of memory usage.

nPag (numeric) : Page number to render, any number between 1 and the total number of pages in the PDF
file. Default is 1.

119

RenderToBMP

RenderToBMP(cFileName, oBmp ,nRes, nPag) => Render's the named file to any Xbase Bitmap object. This
method can be used to create your own viewer, to print PDF files, or even to change the contents of an existing PDF,
adding or erasing elements, saving the rendered page as an image (BMP, JPEG, etc) files or any other desired usage.

cFileName (character) : full filename of PDF file (including path, if not in current folder) to be rendered.

oBmp (object) : Xbase++ bitmap object.

nRes (numeric) : Resolution (DPI) for the rendering, default is 150. Any resolution above 300 DPI can cause
an excessive amount of memory usage.

nPag (numeric) : Page number to render, any number between 1 and the total number of pages in the PDF
file. Default is 1.

120

View & Print Class Variables

lPrinted (logical) True or False if the file was printed, either by the :Print method, or by the Print
button in the View screen.

cZoom (character)

zoom constant name. Default is "Zoom"

cPage (character)

page constant name. Default is "Page"

cTbar (character)

configures Tool Bar position, can be either "Top" or "Left". Default is "Top"

cTitle (character)

contains the title for the View window.

nQpag (numeric)

contains the number of pages in the PDF.

lTip (logical)

True or False controls the display of ToolTips in the View window

 cPrint (character) Printing Method to be used,
"N" = Normal (default),
"A" = Alternative,
"O" = Old

	Xbase++ PDF Class
	Table of Contents
	Overview
	Installing
	Changes
	Acknowledgements
	Demo
	GraDemo
	Charts
	Notes

	Class Methods
	PDF Creation
	Document
	New
	Create
	NewPage
	Size
	EndDoc
	Outline
	PageMode
	Password
	Encryption
	Permission
	NumPages
	GoToPage
	ClonePage
	Merge
	SetPDFAMode
	EmbedFile
	EmbedRelatedFile
	EmbedRelatedString
	EmbeddedFileCount
	EmbeddedFileStrProperty
	GetEmbeddedFileContent
	Compress

	Text and Fonts
	Font
	FontDef
	Text
	mText
	rText
	TextArc
	TextColor
	ChineseFonts
	TextWidth
	GetTextFrom

	Form Fields
	FormAdd
	FormGet
	FormValue
	FormFlatt

	Drawing
	Line
	Box
	Shape
	Image
	LineColor
	LineType
	BoxColor
	LineWidth

	Charts
	BarChart
	LineChart
	PieChart

	Xbase Graxx Methods
	GraSetAttrArea
	GraSetAttrLine
	GraSetAttrMarker
	GraSetAttrString
	GraSetColor
	GraSetFont
	GraStringAt
	GraPos
	GraQueryTextBox
	GraArc
	GraBox
	GraLine
	GraMarker
	GraPathBegin
	GraPathEnd
	GraPathOutline
	GraPathFill
	TextBox
	PageBox
	XppPDF.ch

	PDF Creation Class Variables

	View & Print
	Intro
	VipInit
	VipOpen
	View
	Print
	PrintA
	PrintO
	RenderToPS
	RenderToBMP
	View & Print Class Variables

